III. The composition of atoms

knowledge at the end of 19th century:

- Matter consists of atoms

Last doubts disappeared in 1905, when Einstein showed that the random Brownian motion of dissolved dust-particles, seen under the microscope, is due to the collision with atoms in the liquid.

- Avogadro's number N_A as a link between macroscopic world and the world of atoms:
 There are $N_A = 6.022 \times 10^{23}$ (atoms/molecule) per mole.
 Number much improved due to Einstein's work on Brownian motion.

- Molecules are composed of atoms.
 Faraday's law of electrolysis established that

 \[
 \begin{array}{c}
 \text{salt solution} \\
 \text{Cl}^- \quad \text{Na}^+
 \end{array}
 \]

 1 faraday = 96,500 C charge liberates 1 mole of a monovalent substance, but $\frac{1}{2}$ mole of a divalent substance element such as Ca$^{2+}$ in CaCl$_2$.

- The mass of atoms was known from N_A and the weight of 1 mole of various elements.

Do atoms have an internal structure?
III.1 Thomson's Discovery of the Electron

- Deflection of low-pressure gas discharges in electric field \(\frac{V}{d} \)
 - shows that these rays consist of negatively charged particles.

\[(3.1) \quad \text{Force acting orthogonal to negative charge:} \quad \overrightarrow{F}_y = eE_y = e \frac{V}{d} = \frac{e}{m_e} a_y \]

\[\text{Acceleration in } y \text{-direction over distance } l = \frac{e}{m_e} \]
\[\Rightarrow \quad v_y = a_y \cdot t = \frac{e}{m_e} \cdot \frac{v_y \cdot l}{v_x} \]

- To determine \(v_x \), velocity of negative charge in \(x \)-direction, Thomson uses a magnetic field in \(z \)-direction. According to the Lorentz force \(\overrightarrow{F} = e \overrightarrow{v} \times \overrightarrow{B} \), we have:

\[(3.3) \quad \overrightarrow{F}_y = e v_x \cdot B_z \]

Thomson chose the \(B \)-field such that deflection angle \(\Theta = 0 \)

\[(3.4) \quad e v_x B_z = e E_y \quad \Rightarrow \quad v_x = \frac{E_y}{B_z} = \frac{v_y}{B_z \cdot d} \]

- This gives for the deflection angle \(\theta \):

\[\tan \theta = \frac{v_y}{v_x} \quad (3.2) \quad \frac{v_y}{v_x} \cdot \frac{e}{m_e} \cdot \frac{1}{d} \left(\frac{v_y}{B_z d} \right)^2 \]

allows to determine \(\frac{e}{m_e} \).