6 Radial equation and principle quantum number

Rewrite eq. (5.20)

\[(5.46) \quad - \frac{\hbar^2}{2mr^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \left\{ V(r) + \frac{l(l+1)\hbar^2}{2mr^2} \right\} R(r) = ER(r) \]

Note:

- For a particle in a circular orbit, the orbital kinetic energy can be written as

\[(5.47) \quad K_{\text{orb}} = \frac{1}{2} m \dot{r}^2 = \frac{m}{2} \left(\frac{\ddot{r}}{r} \right)^2 = \frac{l^2}{2mr^2} \]

\[(5.41) \quad \frac{l(l+1)\hbar^2}{2mr^2} \text{ centrifugal term} \]

This additional term in the radial Schrödinger eq. implies a strong increase of the potential for small \(r \). As the orbital quantum number increases, the probability of finding the particle at small \(r \) decreases. (consistent with Bohr’s simple model).

- Substitution

\[(5.48) \quad g(r) = r \cdot R(r) \]

is useful since

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) = r \frac{\partial^2 R}{\partial r^2} + 2 \frac{\partial R}{\partial r} \]

\[(5.49) \quad \frac{\partial^2}{\partial r^2} g(r) = \frac{\partial^2}{\partial r^2} (r R) = \frac{\partial}{\partial r} \left(R + r \frac{\partial R}{\partial r} \right) = 2 \frac{\partial R}{\partial r} + r \frac{\partial^2 R}{\partial r^2} \]
With (5.48), we write the radial equation (5.46) as

\[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} q(r) + \left\{ V(r) + \frac{l(l+1)\hbar^2}{2mr^2} \right\} q(r) = E q(r) \]

This is a one-dimensional Schrödinger equation for a wave function \(q(r) \) in the effective potential \(V_{\text{eff}}(r) \).

To solve (5.50), consider first limiting cases:

1. Case: \(r \to 0 \) then \(V(r) \ll K_{\text{orb}}(r) \)

 eq. (5.50) is approximately:

 \[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} q(r) + \frac{l(l+1)\hbar^2}{2mr^2} q(r) = 0 \]

 This has the solution

 \[q(r) = a r^{l+1} + b r^{-l} \]

 BUT, this function must not be singular at \(r \to 0 \). This physical requirement implies \(b = 0 \)

 \[q(r) \sim r^{l+1} \quad \text{for} \quad r \to 0 \]

 The larger the orbital quantum number \(l \), the more depleted is the wave function around \(r = 0 \).
2. case: \(r \to \infty \) now \(V(r) \) and \(K_{\text{orb}}(r) \) become unimportant, \((5.50) \) is approx.

\[
\frac{\partial^2}{\partial r^2} q(r) = \frac{\sqrt{-2mE}}{\hbar^2} q(r) \quad \epsilon = \frac{2mE}{\hbar^2}
\]

Note: for a bound state, the energy \(E \) is negative, i.e. \(-2mE > 0\).

Solutions of \((5.54) \) have the form

\[
q(r) = \alpha e^{-r\sqrt{\epsilon'}} + \beta e^{r\sqrt{\epsilon'}}
\]

Physically, the solution must vanish for \(r \to \infty \), so \(\beta = 0 \)

\[
(5.56) \quad q(r) \sim e^{-r\sqrt{\epsilon'}} \quad \text{for} \quad r \to \infty
\]

Combining the asymptotic behavior \((5.53) \) and \((5.56) \), we make the ansatz

\[
(5.57) \quad q(r) = r^{l+1} e^{-r\sqrt{\epsilon'}} \cdot W(r)
\]

Insert \((5.57) \) into the diff. eq. \((5.50) \) to find diff. eq. for \(W(r) \)

\[
(5.58) \quad W''(r) + \left\{ \frac{2(l+1) - 2r\sqrt{\epsilon'}}{r} \right\} W'(r) + \frac{\sqrt{\epsilon}}{r} W(r) = 0
\]

Substitute \(x = 2r\sqrt{\epsilon'} \)

\[
(5.59) \quad x W''(x) + \left\{ \frac{2l+2 - x^2}{x} \right\} W'(x) - \left(\frac{l+1 - \sqrt{\epsilon}}{x} \right) W(x) = 0
\]

Here \(\sqrt{\epsilon} = \frac{2m\hbar^2 k^2}{\hbar^2} \)
This diff. eq. has tabulated solutions known as confluent hypergeometric functions \(F \) with arguments \(a, y \)

\[
W(x) = F \left(a+1-\frac{1}{2\sqrt{y}};\ 2a+2;\ x=2\sqrt{y} \right)
\]

These functions are complicated (non-examinable).

For the wave function to have a physically acceptable behavior at \(r=0 \) and \(r=\infty \), one has to require

\[
\alpha = a+1-\frac{1}{2\sqrt{y}} = -n_r \quad \text{integer number} \geq 0
\]

Rewrite this

\[
\lambda + 1 + n_r = n = \frac{\sqrt{y}}{2\sqrt{y}}
\]

\[
E = -\frac{2mE}{\hbar^2} \quad \text{(from (5.54))}
\]

\[
E = \frac{\lambda^2}{2m} = \frac{1}{4n^2} \left(\frac{2mke^2}{\hbar^2} \right)^2
\]

\[\Rightarrow E_n = -\frac{\hbar^2}{2m} \cdot \frac{1}{4n^2} \cdot \frac{4m^2(k^2e^2)^2}{\hbar^2}\]

\[
E_n = -\frac{m^2k^2e^2}{2\hbar^2} \cdot \frac{1}{n^2} \quad n=1, 2, 3, \ldots
\]

\[
E_n = -R_n \left(\frac{1}{n^2} \right) \quad R_n = 13.6 \text{ eV}
\]

\[
\sqrt{-E} = \sqrt{-2mE_n} = \frac{mke^2}{\hbar^2} \frac{1}{n} = \frac{1}{\alpha_o \cdot n}
\]

\[
\alpha_o = \text{Bohr radius} \quad \alpha_o = 0.529 \text{ Å}
\]

see eq. (3.23)
The radial wave function \(R(r) \) depends on the principle quantum number \(n \) and the orbital quantum number \(l \):

\[
R(r) = c_{nm} \cdot r^l e^{-\frac{r}{n\alpha_0}} F(l+1-n; 2l+2; \frac{2r}{n\alpha_0})
\]

\[l < n\]

Explicit form of radial wave functions:

\[
R_{1,0}(r) = \left(\frac{1}{\alpha_0}\right)^{3/2} 2 e^{-\frac{r}{\alpha_0}}
\]

\[
R_{2,0}(r) = \left(\frac{1}{2\alpha_0}\right)^{3/2} (2 - \frac{r}{\alpha_0}) e^{-\frac{r}{2\alpha_0}}
\]

\[
R_{2,1}(r) = \left(\frac{1}{2\alpha_0}\right)^{3/2} \frac{r}{\sqrt{3} \alpha_0} e^{-\frac{r}{2\alpha_0}}
\]

Spectroscopic notation:

\[
\begin{array}{cc}
 n & \text{shell symbol} \\
 1 & K \\
 2 & L \\
 3 & M \\
 4 & N \\
\end{array}
\]

\[
\begin{array}{cc}
 l & \text{shell symbol} \\
 0 & s \\
 1 & p \\
 2 & d \\
 3 & f \\
\end{array}
\]

Entire wave function of electron in hydrogen:

\[
\Psi_{n\ell m}(r, \theta, \phi) = c_{nm} r^\ell e^{-\frac{r}{n\alpha_0}} F(...) \Gamma_{\ell m}(\theta, \phi)
\]

\[
|\Psi_{n\ell m}(r, \theta, \phi)|^2 \quad \text{defines probability for finding } e \text{ at } r, \theta, \phi
\]

is plotted for several quantum numbers in Serway, Figs 8.12, 8.13.