1. Tunneling through barriers which are high or wide (or both) is very unlikely.
 (a) Starting from eq. (4.56) of the lecture notes for the transmission coefficient, show
 that for a square barrier with $2mUL^2/h^2 \gg 1$ and particle energies well below the top of
 the barrier ($E \ll U$), the probability of transmission is approximately
 \[P = 16 \frac{E}{U} \exp \left(-2 \sqrt{\frac{2m(U - 1)}{h}L} \right). \]
 (b) Give numerical estimates for the exponential factor in P for each of the following
 cases: 1.) an electron with $U - E = 0.01$ eV and $L = 0.1$ nm; 2.) an electron with
 $U - E = 1$ eV and $L = 0.1$ nm; 3.) an α-particle ($m = 6.7 \times 10^{-27}$ kg) with $U - E = 10^6$
 eV and $L = 10^{-15}$ m; 4.) a bowling ball ($m = 8$ kg) with $U - E = 1$ J and $L = 2$ cm
 (this corresponds to the ball’s getting past a barrier of 2 cm wide and too high for the
 ball to slide over).

2. The linear operator corresponding to angular momentum is \(\hat{\mathbf{L}} = -i \hbar \hat{\mathbf{r}} \times \hat{\nabla} = (\hat{L}_x, \hat{L}_y, \hat{L}_z) \).
 Derive the commutation relations:
 \[
 [\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z,
 [\hat{L}_z, \hat{L}_x] = 0.
 \]

3. Consider an infinitely extended potential step of the form $V(x) = 0$ for $x < 0$ and
 $V(x) = V$ for $x > 0$. A particle of mass m and energy E is incident from the left onto
 this potential step. Determine the reflection coefficient for the case $E > V$. To this
 end, specify solutions of time-independent Schrödinger equation, determine continuity
 conditions and solve them.

4. Consider a particle incident from the left on a square barrier of width L and height U.
 The particle has energy $E > U$. Specify the time-independent Schrödinger equation and
 determine the wave function which solves it by specifying the continuity conditions at
 $x = 0$ and $x = L$. Calculate the transmission coefficient and show that transmission is
 perfect ($T = 1$) for specific energies. What is different for the case $E > U$ considered
 here, compared to the case $E < U$ considered in the lecture?

5. Recall Heisenberg’s uncertainty principle $\Delta p_x \Delta x \geq \frac{\hbar}{2}$. An air rifle is used to shoot 1.0
 g particles at 100 m/s through a hole of diameter 2.0 mm. How far from the rifle must
 an observer be to see the beam spread by 1.0 cm because of the uncertainty principle?
 Compare this answer with the diameter of the Universe ($\approx 10^{26}$ m).

6. Don’t forget to practice energy-momentum conservation: A particle of mass m moving
 along the x-axis with a velocity component $+u$ collides head-on and sticks to a particle
 of mass $m/3$ moving along the x axis with the velocity component $-u$. What is the mass
 M of the resulting particle?