Azimuthal Anisotropy: The Higher Harmonics

Art Poskanzer
Event plane determination in TPC

- v_2 signal drops by about a factor of 1.8 from mid-rapidity to $\eta = 3$
- PHOBOS fall off confirmed
Search for higher harmonics

- Long History
 - Voloshin at CERES
 - Me and Voloshin with NA49 data
- Large, and decreasing slowly with harmonic number
- Probably all non-flow effects
- Except Voloshin and Zhang at AGS
 - E877: PRL 73, 2532 (1994)
 - Q distribution method
Peter Kolb

- v_4 - a small, but sensitive observable for heavy ion collisions: PRC 68, 031902(R)
 - Strong potential to constrain model calculations and carries valuable information on the dynamical evolution of the system
 - Magnitude, and even the sign, sensitive to initial conditions of hydro
v_2 determines the reaction plane

- v_1 (Aihong Tang), v_4, v_6 and v_8 using second harmonic particles
- Possible because v_2 is so large at RHIC and event plane resolution is so good in STAR

4th harmonic of one subevent relative to 2nd harmonic of other subevent: v_4 positive

Poskanzer
Terminology

- $n = \text{harmonic number}$
- **Old**
 - $v_n = \text{harmonic order } n \text{ with respect to event plane of same order}$
 - $v_n\{N\} = \text{N-particle cumulant for } v_n$
- **Addition**
 - $v_n\{EP_2\} = \text{harmonic order } n \text{ with respect to event plane of order 2}$
Method

Described in methods paper:

Square-root of subevent correlation

\[v = \frac{v_{\text{observed}}}{\text{resolution}} \]

- \(V_4 \) vs. 2\text{nd}
- \(V_6 \) vs. 2\text{nd}
- \(V_8 \) vs. 2\text{nd}

Signal to fluctuation noise
Resolution

For v_2
For v_4
For v_6

Resolution vs Centrality

k=1
k=2
k=3
$v_4(p_t)$

![Graph showing $v_4(p_t)$]
$v_4(p_t)$

![Graph showing v_n vs. p_t](image)
The figure illustrates the behavior of various v_n coefficients as a function of p_t, with a focus on v_4(p_t). The graph shows:

- v_n \approx v_2^{n/2}
- v_4 \{3\}
- v_4 \{EP_2\}
- v_6 \{EP_2\}

The plot compares the calculated v_n values against the theoretical predictions for different orders of n, demonstrating the scaling behavior of these coefficients with p_t.
$v_4(p_t)$ Scaling

\[\frac{v_4}{v_2^2} \]

\[p_t \text{ (GeV/c)} \]

Snellings and Poskanzer
The Waist

High p_t
- 16.5% v_2
- 3.8% v_4

Kolb no waist:

$v_4 = (10 \times v_2 - 1) / 34$

mean values

Poskanzer
$v_4\{EP_2\}$ in the FTPC

- v_4 with respect to the 2nd harmonic event plane in the TPC
- Signal in the FTPCs consistent with 0 (0.03 ± 0.06)% with two sigma upper limit of 0.15%
- Drop of v_4 from TPC to FTPC faster than for v_2
$v_4(\text{centrality})$
$v_4(\text{centrality})$
v triply integrated in MTPC

<table>
<thead>
<tr>
<th>v</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.18 +/- 0.005</td>
</tr>
<tr>
<td>4</td>
<td>0.44 +/- 0.009</td>
</tr>
<tr>
<td>6</td>
<td>0.043 +/- 0.037</td>
</tr>
<tr>
<td>8</td>
<td>-0.06 +/- 0.14</td>
</tr>
</tbody>
</table>

Two sigma upper limit is 0.1%
Non-flow and/or Fluctuations

For v_2, about 20% reduction from $v_2\{2\}$ to $v_2\{4\}$

For v_4, up to a factor 3 difference!
Conclusions

- v_4 compared to v_2
 - Integrated, a factor of 12 smaller
 - v_2^2 scaling

- v_6
 - Probably another factor of 10 smaller
 - Consistent with v_2^3 scaling

- Hydro, sensitive to initial conditions
 - v_4 fits very well
 - v_6 is zero instead of negative from hydro

- Waist
 - v_4 larger than needed to remove the waist

- $v_4\{EP_4\}$
 - 3x high because of either fluctuations or nonflow